

yy-Achse

zz-Achse

< 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

- 301 -

## Ausfachung des Mastschaftes - Wand Y 8.2

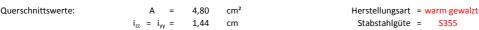
Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 1 Position: Mast 13 268, 269, 311, 312

804

mm

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

0,9


| max. Druckkraft | $N_{D,d}$ | = | -10,73 | kN | Lastfall: Ha-1 (VertLast *1,35) |
|-----------------|-----------|---|--------|----|---------------------------------|
| max. Zugkraft   | $N_{z,d}$ | = | 9,04   | kN | Lastfall: Ha-1 (VertLast *1,00) |
| Stützkraft      | $S_d$     | = | 6,87   | kN |                                 |

Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 0,9 1727 1554 mm (um yy-Achse)

893

0,97

b1 b2 Profil: 50 mm



cm

Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

(um vv-Achse)

# 2.) Stabilitätsnachweise:

 $S_{k,\zeta} = L_1 =$ 

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 50/5 =10,00 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0,0537 \* b1 / v (t \*235 / fy) = 0,660 => ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 50/5 =10,00 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

0,0537 \* b1 / v (t \*235 / fy) = ρ2 =  $\lambda'_{p,2} =$ bezogene Plattenschlankheit: 0.660 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 4,80 cm<sup>2</sup>

 $N_D = A_{eff} * f_y / \gamma_{M1}$ : -155,01 Druckkraft -10,73 kN zulässig! Druckspannungsnachweis: (EN 50341-1:2001 J.4.3)

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1) Sd / Nd = 0.64 Knickspannungslinie C => Imperfektionsbeiwert $\alpha$ = 0,49

Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 < 200 57,01

Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1/i_{vv}$ 82,60 < 200 max λ = 82,60

 $\pi * V(E/f_v) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_n =$ bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \nu (A_{eff} / A) =$ [1]

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 1.30$  $\Phi_{bk} =$ [1]  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') =$

0,49 [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -76,64$ Knickbeanspruchbarkeit BK:

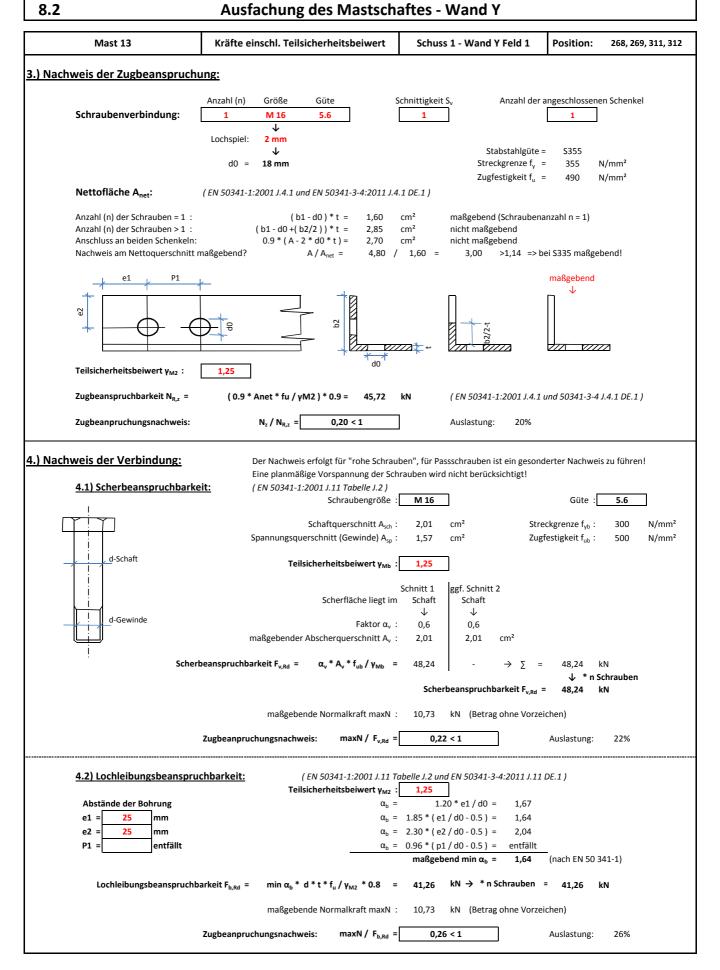
Stabilitätsnachweis Biegeknicken:  $N_d / N_{R,d} =$ 0,14 < 1 14% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t =$ 50.00

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,65


> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,83  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.75$  $K_{bdk} =$ [1]

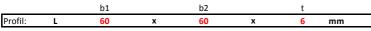
 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -116,67$  kN Knickbeanspruchbarkeit BDK:

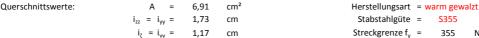
Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0.09 < 19% Auslastung:



- 302 -







- 303 -

## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 2 Position: Mast 13 270, 271, 313, 314 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen: max. Druckkraft Lastfall: J-2 Voll Ausfachungsart: einfache Diagonalen  $N_{D,d}$ max. Zugkraft  $N_{z,d}$ 52.36 kΝ Lastfall: I-2 Voll Stützkraft kΝ Achtung keine Stützkraft! Sd

Knicklänge: 1 β Eulerfall 2  $S_k$  $S_{k,X} = L_2 =$ 1,0 912 912 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 1,0 912 912 mm (um vv-Achse)





cm

Streckgrenze f<sub>v</sub> = N/mm<sup>2</sup> 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

< 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$  $b1/t = 60/6 = 10,00 < 13,8 \Rightarrow bei Stahlgüte S355 keine Reduzierung notwendig$ 

bezogene Plattenschlankheit: 0,0537 \* b1 / v (t \*235 / fy) = 0,660 => ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 60/6 = 10,00< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 = λ'<sub>p,2</sub> = 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.660 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 6,91 cm<sup>2</sup>

Druckspannungsnachweis:  $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -222,97 Druckkraft -52,2 kN zulässig! (EN 50341-1:2001 J.4.3)

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1) Sd / Nd = 0.00Knickspannungslinie C => Imperfektionsbeiwert $\alpha$ = 0,49

Stützkraft nicht vorhanden Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 52,78 < 200

Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1 / i_{vv}$ 78,02 < 200

max λ = 78,02  $\pi * V(E/f_v) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_n =$ bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] = 1.22$  $\Phi_{bk} =$ [1]  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') =$

0,53 [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -117,69 kN$ Knickbeanspruchbarkeit BK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegeknicken: 0,44 < 1 44% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 50,00$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,65

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,83  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.75$  $K_{bdk} =$ [1]

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -167,83$  kN Knickbeanspruchbarkeit BDK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegedrillknicken: 0,31 < 1 31% Auslastung:



- 304 Ausfachung des Mastschaftes - Wand Y

## Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 2 Position: 270, 271, 313, 314 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S<sub>v</sub> Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 22 mm Streckgrenze f<sub>v</sub> = 355 N/mm<sup>2</sup> Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) maßgebend (Schraubenanzahl n = 1) Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 28 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 4.08 cm<sup>2</sup> nicht maßgebend Anschluss an beiden Schenkeln: 0.9 \* ( A - 2 \* d0 \* t ) =3,84 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,91 / 2,28 = 3,03 >1,14 => bei S335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 65.16 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ Zugbeanpruchungsnachweis: Auslastung: 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 20 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 3 14 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 2.45 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 3,14 3.14 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 75,36 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 75,36 maßgebende Normalkraft maxN: 52,36 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v.Rd} =$ 0,69 < 1 Auslastung: 69% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,64 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,60 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : 1,99 entfällt $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = entfällt P1 = 1,60 (nach EN 50 341-1) maßgebend min $\alpha_b$ = Lochleibungsbeanspruchbarkeit F<sub>b,Rd</sub> = $\min \alpha_b * d * t * f_u / \gamma_{M2} * 0.8 =$ 60,13 kN → \* n Schrauben = 60,13 maßgebende Normalkraft maxN: 52,36 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,87 < 1 Auslastung:



- 305 -

## 8.2 Ausfachung des Mastschaftes - Wand Y

Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 3 Position: Mast 13 272, 273, 315, 316

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$ | = | -50,53 | kN | Lastfall: J-2 Voll |
|-----------------|-----------|---|--------|----|--------------------|
| max. Zugkraft   | $N_{Z,d}$ | = | 51,56  | kN | Lastfall: J-2 Voll |
| Stützkraft      | $S_d$     | = | 51,56  | kN |                    |

Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 0,9 1891 1702 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 0,9 977 879 mm (um vv-Achse)

|         |   | b1 |   | b2 |   | t |    |  |
|---------|---|----|---|----|---|---|----|--|
| Profil: | L | 60 | х | 60 | Х | 6 | mm |  |

Querschnittswerte: 6,91 Herstellungsart = warm gewalzt 1,73 Stabstahlgüte = \$355 cm

Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$  $b1/t = 60/6 = 10,00 < 13,8 \Rightarrow bei Stahlgüte S355 keine Reduzierung notwendig$ 

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.660=> ρ1 =

Schenkel 2:

Plattenschlankheit:  $b2/t = 60/6 = 10,00 < 13,8 \Rightarrow bei Stahlgüte S355 keine Reduzierung notwendig$ 

ρ2 =  $\lambda'_{p,2} =$ 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.660 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: cm<sup>2</sup> 6,91

 $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -222,97 Druckkraft -50,53 kN zulässig! (EN 50341-1:2001 J.4.3) Druckspannungsnachweis:

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Sd / Nd = 1.02 Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49 >= 2/3 Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 < 200 75,22

 $L_1 / i_{vv} =$ Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$ 75,22 < 200

max λ = 75,22  $\pi * V(E/f_y) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_s =$ bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] = 1.18$  $\Phi_{bk} =$ [1]

 $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.55$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -122,42 kN$ Knickbeanspruchbarkeit BK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegeknicken: 0,41 < 1 41% Auslastung:

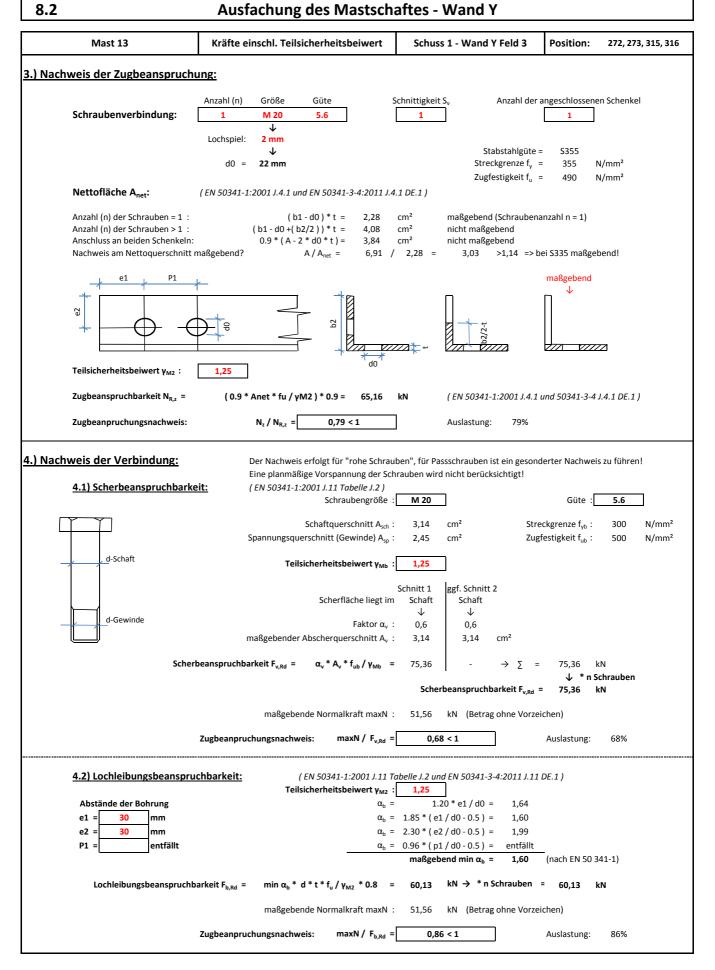
# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 50,00$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,65

> $0.5[1+\alpha(\lambda'-0.2)+\lambda'*\lambda'] = 0.83$  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,75$  [1] K<sub>bdk</sub> =


 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -167,83 kN$ Knickbeanspruchbarkeit BDK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegedrillknicken: 0.30 < 130% Auslastung:

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =



- 306 -





yy-Achse

1,10

zz-Achse

- 307 -

# 8.2 Ausfachung des Mastschaftes - Wand Y

Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 4 Position: 274, 275, 276, 277, 317, 318, 319, 320

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$      | = | -47,88 kN       | Lastfall: J-2 Teil |
|-----------------|----------------|---|-----------------|--------------------|
| max. Zugkraft   | $N_{Z,d}$      | = | <b>47,55</b> kN | Lastfall: J-2 Voll |
| Stützkraft      | S <sub>d</sub> | = | 46,70 kN        |                    |

Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 0,9 2011 1810 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 0,9 1032 929 mm (um vv-Achse)



1,17

Querschnittswerte: A = 6.91 cm<sup>2</sup> Herstellungsart = warm gewalzt  $i_{zz} = i_{yy} = 1.73$  cm Stabstahlgüte =  $\frac{$355}{}$ 

cm

Sd / Nd = 0.98

>= 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

# 2.) Stabilitätsnachweise:

# 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

 $Plattenschlankheit: \hspace{1cm} \lambda_{p,1} = \hspace{1cm} b1/t = \hspace{1cm} 60/6 = \hspace{1cm} 10,00 \\ < 13,8 => bei \hspace{1cm} Stahlgüte \hspace{1cm} S355 \hspace{1cm} keine \hspace{1cm} Reduzierung \hspace{1cm} notwendig \\ + \hspace{1cm} 10,00 \\$ 

bezogene Plattenschlankheit:  $\lambda'_{0,1} = 0.0537*b1/v(t*235/fy) = 0.660 => \rho1 = 1.00$ 

Schenkel 2:

Plattenschlankheit:  $\lambda_{p,2}$  = b2/t = 60/6 = 10,00 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit:  $\lambda'_{p,2} = 0.0537*b1/v(t*235/fy) = 0.660 => \rho2 = 1.00$ 

Wirksame Querschnittsfläche:  $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] = 6,91$  cm<sup>2</sup>

Druckspannungsnachweis:  $N_D = A_{eff} * f_y / \gamma_{M1}$ : -222,97 Druckkraft -47,88 kN zulässig! (EN 50341-1:2001 J.4.3)

# **2.2) Biegeknicken (BK):** (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 = >$  siehe EN 50341-1:2001 J.6.3.3 79,45 < 200

Biegeknicken um die X-Achse (γy-Achse):  $λ_{BK,X} = λ_2 = >$  siehe EN 50341-1:2001 J.6.3.3 79,45 < 200

Biegeknicken um die ζ-Achse (νν-Achse):  $λ_{BK,\zeta} = λ_1 = >$   $L_1 / i_{vv} = 79,45 < 200$ max λ = 79,45

Bezugsschlankheitsgrad  $\lambda_a = \pi * \forall (E/f_{\gamma}) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) \forall (A_{eff}/A) = 1,04$  [1]

 $\Phi_{bk} = 0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 1,25 [1]$   $K_{bk} = 1 / (\Phi + \sqrt{(\Phi^2 - \lambda' * \lambda')}) = 0.52 [1]$ 

 $K_{bk} = 1/(\mathcal{O} + V(\mathcal{O}^2 - \lambda' * \lambda') = 0.52$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1} = 0.52$ 

Knickbeanspruchbarkeit BK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -115,32 kN$ 

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} = 0.42 < 1$  Auslastung: 42%

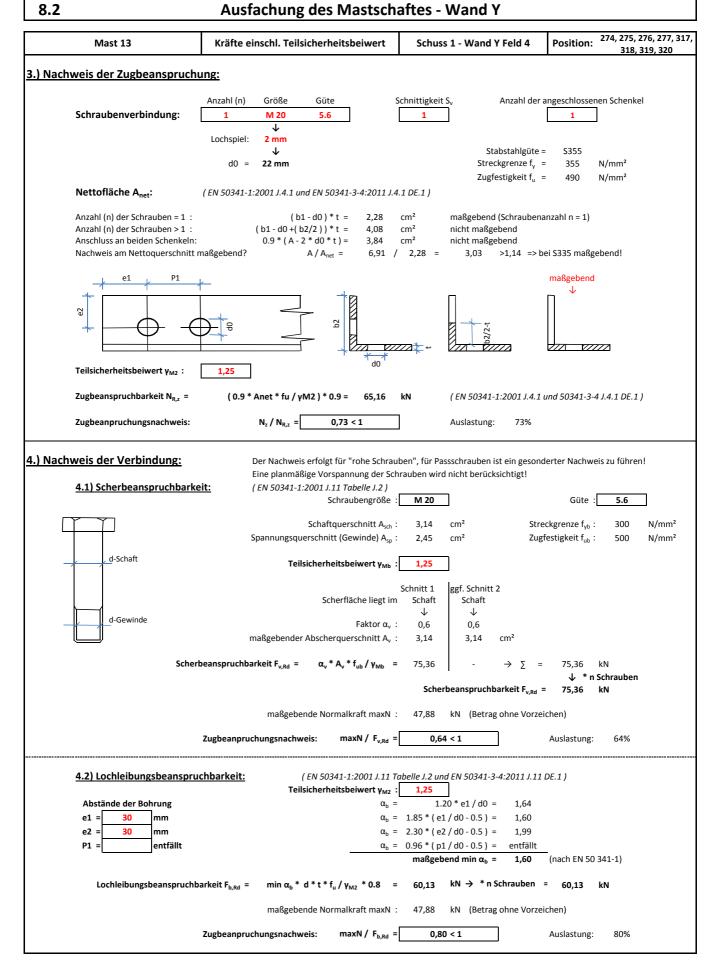
# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} \Rightarrow 5*b/t = 50,00$ 

Bezugsschlankheitsgrad  $\lambda_a = \pi * v(E/f_v) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) v(A_{eff}/A) = 0,65$  [1]


 $\begin{array}{lll} \varPhi_{bdk} = & 0.5 \left[ \, 1 + \alpha \left( \, \lambda' - 0.2 \, \right) + \lambda' \, * \, \lambda' \, \right] \, = & 0.83 & [1] \\ K_{bdk} = & 1 \, / \, \left( \, \varPhi \, + \, \sqrt{} \, \left( \, \varPhi^{\, 2} - \lambda' \, * \, \lambda' \, \right) \, = & 0.75 & [1] \end{array}$ 

Knickbeanspruchbarkeit BDK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -167,83 \text{ kN}$ 

Stabilitätsnachweis Biegedrillknicken: N<sub>d</sub> / N<sub>R,d</sub> = 0,29 < 1 Auslastung: 29%



- 308 -





Ausfachungsart: einfache Diagonalen

- 309 -

# 8.2 Ausfachung des Mastschaftes - Wand Y

Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 5 Position: 278, 279, 321, 322

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

Knicklänge: 1 β Eulerfall 2  $S_k$  $S_{k,X} = L_2 =$ 1,0 1031 1031 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 1,0 1031 1031 mm (um vv-Achse)



Querschnittswerte: A = 6.91 cm<sup>2</sup> Herstellungsart = warm gewalzt  $i_{zz} = i_{yy} = 1.73$  cm Stabstahlgüte =  $\frac{$355}{}$ 

1,17 cm Streckgrenze f<sub>y</sub> = 355 N/mm<sup>2</sup>

Zugfestigkeit f<sub>u</sub> = 490 N/mm<sup>2</sup>

E-Modul = 210000 N/mm<sup>2</sup>

# 2.) Stabilitätsnachweise:

# 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

 $Plattenschlankheit: \hspace{1cm} \lambda_{p,1} = \hspace{1cm} b1/t \hspace{1cm} = \hspace{1cm} 60/6 \hspace{1cm} = \hspace{1cm} 10,00 \hspace{1cm} < \hspace{1cm} 13,8 > \hspace{1cm} be \hspace{1cm} i \hspace{1cm} Stabligüte \hspace{1cm} S355 \hspace{1cm} keine \hspace{1cm} Reduzierung notwendig \hspace{1cm} in \hspace{1cm} i \hspace$ 

bezogene Plattenschlankheit:  $\lambda'_{p,1} = 0.0537 * b1 / v (t *235 / fy) = 0.660 => p1 = 1.000 + p1 = 0.060$ 

Schenkel 2:

Plattenschlankheit:  $\lambda_{p,2}$  = b2/t = 60/6 = 10,00 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit:  $\lambda'_{p,2} = 0.0537*b1/v(t*235/fy) = 0.660 => \rho2 = 1.00$ 

Wirksame Querschnittsfläche:  $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] = 6,91$  cm<sup>2</sup>

Druckspannungsnachweis:  $N_D = A_{eff} * f_y / \gamma_{M1}$ : -222,97 Druckkraft -43,35 kN zulässig! (EN 50341-1:2001 J.4.3)

Sd / Nd = 0.00

< 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

# **2.2) Biegeknicken (BK):** (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 \Rightarrow \text{ siehe EN } 50341-1:2001 \text{ J.6.3.3}$  59,66 < 200

Biegeknicken um die X-Achse (yv-Achse):  $\lambda_{BK,X} = \lambda_2 = >$  siehe EN 50341-1:2001 J.6.3.3 59,66 < 200

Biegeknicken um die  $\zeta$ -Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 = >$   $L_1 / i_w = 88,20 < 200$ max  $\lambda = 88,20$ 

Bezugsschlankheitsgrad  $\lambda_a = \pi * V(E/f_{\gamma}) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) V(A_{eff}/A) = 1,15$  [1]

 $\Phi_{\text{bk}} = 0.5 \left[ 1 + \alpha \left( \lambda' - 0.2 \right) + \lambda' * \lambda' \right] = 1.40 \quad [1]$   $K_{\text{bk}} = 1 / \left( \Phi + \sqrt{\left( \Phi^2 - \lambda' * \lambda' \right)} \right) = 0.46 \quad [1]$ 

 $K_{bk} = 1/(\mathcal{O} + V(\mathcal{O}^2 - \lambda' * \lambda') = 0.46$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1} = 1.10$ 

Knickbeanspruchbarkeit BK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -101,72 kN$ 

Stabilitätsnachweis Biegeknicken: N<sub>d</sub> / N<sub>R,d</sub> = 0,43 < 1 Auslastung: 43%

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} \Rightarrow 5*b/t = 50,00$ 

Bezugsschlankheitsgrad  $\lambda_a = \pi * v(E/f_v) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) v(A_{eff}/A) = 0,65$  [1]


 $\begin{array}{lll} \varPhi_{bdk} = & & 0.5 \left[ \, 1 + \alpha \left( \, \lambda' - 0.2 \, \right) + \lambda' \, {}^* \, \lambda' \, \right] \, = & 0.83 & [1] \\ K_{bdk} = & & 1 \, / \, \left( \, \varPhi + \, V ( \, \varPhi^{\, 2} - \, \lambda' \, {}^* \, \lambda' \, \right) \, = & 0.75 & [1] \end{array}$ 

Knickbeanspruchbarkeit BDK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -167,83 \text{ kN}$ 

Stabilitätsnachweis Biegedrillknicken: N<sub>d</sub> / N<sub>R,d</sub> = 0,26 < 1 Auslastung: 26%



- 310 -





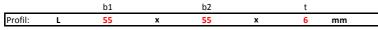
Ausfachungsart: einfache Diagonalen

yy-Achse

1,10

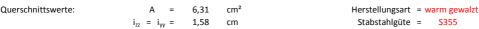
zz-Achse

- 311 -


## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 5 Position: Mast 13 280, 281, 323, 324

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:


| max. Druckkraft | $N_{D,d}$ | = | -75,42 | kN | Lastfall: Ha-4 (VertLast *1,35) |
|-----------------|-----------|---|--------|----|---------------------------------|
| max. Zugkraft   | $N_{z,d}$ | = | 78,57  | kN | Lastfall: Ha-4 (VertLast *1,00) |
| Stützkraft      | $S_d$     | = |        | kN | Achtung keine Stützkraft!       |

Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 1,0 1003 1003 (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 1,0 1003 1003 mm (um vv-Achse)



1,07

 $i_{\zeta} = i_{vv} =$ 



cm

Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

< 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.605=> ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 = λ'<sub>p,2</sub> = 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.605 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 6,31 cm<sup>2</sup>

Druckspannungsnachweis:  $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -75,42 kN zulässig! (EN 50341-1:2001 J.4.3)

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1) Sd / Nd = 0.00Knickspannungslinie C => Imperfektionsbeiwert $\alpha$ = 0,49

Stützkraft nicht vorhanden Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 < 200 63,66

Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1 / i_{vv}$ 94,00 < 200 max λ = 94,00

 $\pi * V(E/f_v) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_n =$ bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] = 1.51$  $\Phi_{bk} =$ [1]  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') =$

0,42 [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -85,43$  kN Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,88 < 1 88% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  $K_{bdk} =$ [1]

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93$  kN Knickbeanspruchbarkeit BDK:

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0.47 < 147% Auslastung:



- 312 -Ausfachung des Mastschaftes - Wand Y

## Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 1 - Wand Y Feld 5 Position: 280, 281, 323, 324 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S<sub>v</sub> Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 18 mm Streckgrenze f<sub>v</sub> = 355 N/mm<sup>2</sup> Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) nicht maßgebend Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> maßgebend (Schraubenanzahl n > 1) Anschluss an beiden Schenkeln: 0.9 \* (A - 2 \* d0 \* t) =3,73 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,31 / 3,87 = 1,63 >1,14 => bei \$335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 110,59 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ 0,71 < 1 Zugbeanpruchungsnachweis: Auslastung: 71% 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 2.01 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 96,48 maßgebende Normalkraft maxN: 78,57 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ 0,81 < 1 Auslastung: 81% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,64 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : mm 2,68 $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = P1 = 2.19 (nach EN 50 341-1) maßgebend min $\alpha_b$ = 1,64 Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = min $\alpha_b$ \* d \* t \* $f_u$ / $\gamma_{M2}$ \* 0.8 = 49,51 kN $\rightarrow$ \* n Schrauben = 99,01 maßgebende Normalkraft maxN: 78,57 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,79 < 1 Auslastung:



N/mm²

490

E-Modul = 210000 N/mm<sup>2</sup>

Zugfestigkeit f<sub>u</sub> =

- 313 -

## 8.2 Ausfachung des Mastschaftes - Wand Y

|         | Mast 13               | Kräfte einschl. Teilsicherheitsbeiwert |                                         |              | Schuss 2 - Wand Y Feld 6 |           | 6 Position: 282, 283, 325, 326 |                                                 |                                      |
|---------|-----------------------|----------------------------------------|-----------------------------------------|--------------|--------------------------|-----------|--------------------------------|-------------------------------------------------|--------------------------------------|
| 1.) Maß | gebende Querso        | hnittswer                              | te, Kräfte                              | und Kni      | cklänge                  | <u>n:</u> |                                |                                                 |                                      |
|         | max. Druckkraft       | $N_{D,d}$                              | =                                       | -76,24       | kN                       | Lastfall: | Ha-4 (V                        | ertLast *1,35)                                  | Ausfachungsart: gekreuzte Diagonalen |
|         | max. Zugkraft         | $N_{Z,d}$                              | =                                       | 76,36        | kN                       | Lastfall: | Ha-4 (V                        | ertLast *1,00)                                  | *                                    |
|         | Stützkraft            | $S_d$                                  | =                                       | 76,36        | kN                       |           |                                |                                                 | <b>/ \&amp;</b>                      |
|         | Knicklänge:           | β Eulerfall 2                          | *                                       | 1            | =                        | $S_k$     |                                |                                                 |                                      |
|         | $S_{k,X} = L_2 =$     | 0,9                                    | *                                       | 2070         | =                        | 1863      | mm                             | (um yy-Achse)                                   |                                      |
|         | $S_{k,\zeta} = L_1 =$ | 0,9                                    | *                                       | 1062         | =                        | 956       | mm                             | (um vv-Achse)                                   | KX                                   |
|         |                       | b1                                     |                                         | b2           |                          | t         |                                |                                                 | $\backslash \times \backslash$       |
|         | Profil: L             | 55                                     | х                                       | 55           | х                        | 6         | mm                             |                                                 |                                      |
|         | Querschnittswerte:    |                                        | A = i <sub>zz</sub> = i <sub>yy</sub> = | 6,31<br>1,58 | cm²<br>cm                |           | ŀ                              | Herstellungsart = warm g<br>Stabstahlgüte = S35 | -                                    |
|         |                       |                                        | $i_{\zeta} = i_{vv} =$                  | 1,07         | cm                       |           | ;                              | Streckgrenze f <sub>y</sub> = 35                | 5 N/mm²                              |

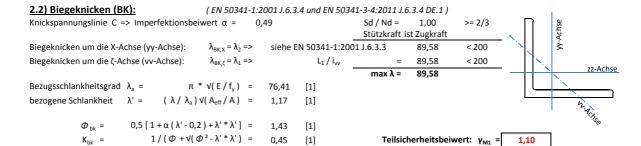
# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0,0537 \* b1 / v (t \*235 / fy) = 0,605=> ρ1 =


Schenkel 2:

Plattenschlankheit: b2/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 = bezogene Plattenschlankheit:  $\lambda'_{p,2} =$ 0.0537 \* b1 / v (t \*235 / fy) =0.605 1.00

Wirksame Querschnittsfläche:  $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ cm² 6,31

Druckspannungsnachweis:  $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -76,24 kN zulässig! (EN 50341-1:2001 J.4.3)



 $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -91,05 kN$ Knickbeanspruchbarkeit BK:

 $N_d/N_{R,d} =$ Stabilitätsnachweis Biegeknicken: 0,84 < 1 84% Auslastung:

# 2.3) Biegedrillknicken (BDK):

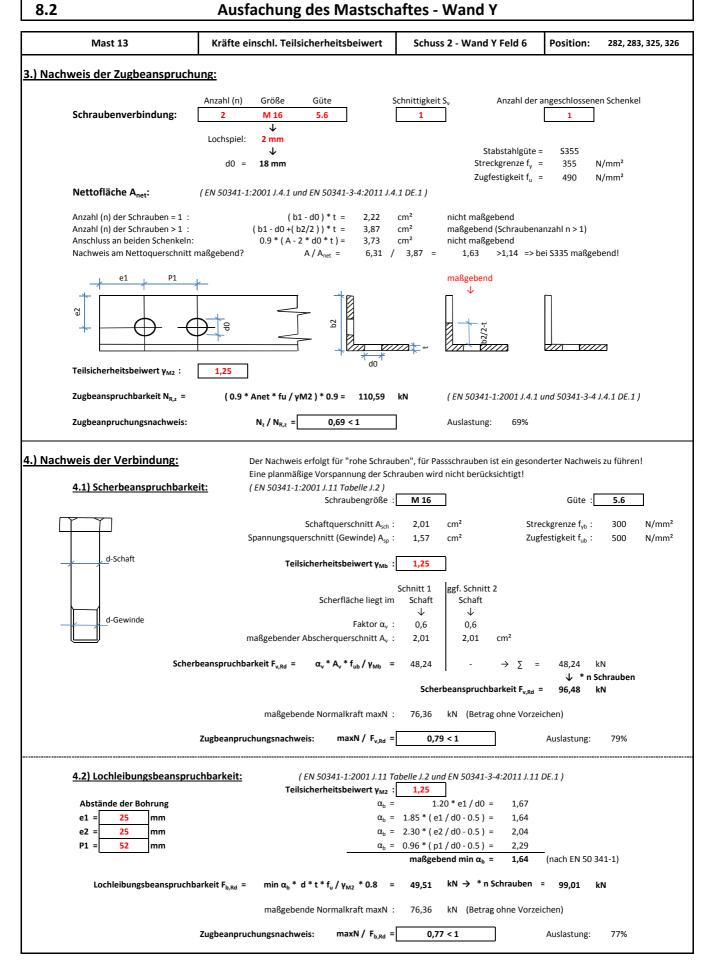
Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) = 76,41$  [1]

bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) v(A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$


 $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  [1]  $K_{bdk} =$ Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

Knickbeanspruchbarkeit BDK:  $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93 kN$ 

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0.48 < 148% Auslastung:



- 314 -





- 315 -

## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 2 - Wand Y Feld 7 Position: Mast 13 284, 285, 327, 328

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$ | = | -72,02 | kN | Lastfall: Ha-4 (VertLast *1,00) |
|-----------------|-----------|---|--------|----|---------------------------------|
| max. Zugkraft   | $N_{Z,d}$ | = | 71,25  | kN | Lastfall: Ha-4 (VertLast *1,35) |
| Stützkraft      | $S_d$     | = | 71,24  | kN |                                 |

Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 0,9 2170 1953 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 0,9 1114 1003 mm (um vv-Achse)

|         |   | b1 |   | b2 |   | t |    |
|---------|---|----|---|----|---|---|----|
| Profil: | L | 55 | х | 55 | х | 6 | mm |

Querschnittswerte: 6,31 Herstellungsart = warm gewalzt Stabstahlgüte = \$355 1.58 cm

Streckgrenze f<sub>v</sub> = 1,07 N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.605=> ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 =  $\lambda'_{p,2} =$ 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.605 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: cm<sup>2</sup> 6,31

 $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -72,02 kN zulässig! (EN 50341-1:2001 J.4.3) Druckspannungsnachweis:

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1) Sd / Nd = 0.99Knickspannungslinie C => Imperfektionsbeiwert $\alpha$ = 0,49

>= 2/3 Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 < 200

 $L_1 / i_{vv} =$ Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$ 93,96 < 200 max λ = 93,96

 $\pi * V(E/f_y) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_s =$ bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) V(A_{eff} / A) =$ [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] = 1.51$  $\Phi_{bk} =$ [1]

 $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,42$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -85,48$  kN Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,84 < 1 84% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  [1] K<sub>bdk</sub> =

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93 kN$ Knickbeanspruchbarkeit BDK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegedrillknicken: 0.45 < 1Auslastung: 45%

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =



- 316 -

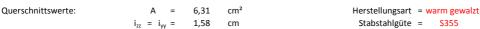
## Ausfachung des Mastschaftes - Wand Y Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 2 - Wand Y Feld 7 Position: 284, 285, 327, 328 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S<sub>v</sub> Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 18 mm Streckgrenze f<sub>v</sub> = 355 N/mm<sup>2</sup> Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) nicht maßgebend Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> maßgebend (Schraubenanzahl n > 1) Anschluss an beiden Schenkeln: 0.9 \* (A - 2 \* d0 \* t) =3,73 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,31 / 3,87 = 1,63 >1,14 => bei \$335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 110,59 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ 0,64 < 1 Zugbeanpruchungsnachweis: Auslastung: 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 2.01 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 96,48 maßgebende Normalkraft maxN: 72.02 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ Auslastung: 75% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,64 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : mm 2,04 $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = P1 = 52 2.29 (nach EN 50 341-1) maßgebend min $\alpha_b$ = 1,64 Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = $\min \alpha_b * d * t * f_u / \gamma_{M2} * 0.8 =$ 49,51 kN → \* n Schrauben = 99,01 maßgebende Normalkraft maxN: 72,02 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,73 < 1 Auslastung: 73%



- 317 -

## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 2 - Wand Y Feld 8 Position: Mast 13 286, 287, 329, 330


# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$ | = | - <b>67,51</b> kN | Lastfall: Ha-4 (VertLast *1,35) |
|-----------------|-----------|---|-------------------|---------------------------------|
| max. Zugkraft   | $N_{z,d}$ | = | <b>64,07</b> kN   | Lastfall: Ha-4 (VertLast *1,00) |
| Stützkraft      | $S_d$     | = | 64,07 kN          |                                 |

Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 0,9 2275 2048 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 0,9 1167 1050 mm (um vv-Achse)

|         |   | b1 |   | b2 |   | t |    |
|---------|---|----|---|----|---|---|----|
| Profil: | L | 55 | х | 55 | х | 6 | mm |

1,07



Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

# 2.) Stabilitätsnachweise:

### 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.605=> ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 =  $\lambda'_{p,2} =$ 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.605 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: cm<sup>2</sup> 6,31

 $N_D \le A_{eff} * f_{\gamma} / \gamma_{M1}$ : -203,61 Druckkraft -67,51 kN zulässig! (EN 50341-1:2001 J.4.3) Druckspannungsnachweis:

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Sd / Nd = 0.95 Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49 >= 2/3 Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 < 200 98,43

 $L_1/i_{vv}$  = Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$ 98,43 < 200 max λ = 98,43 Bezugsschlankheitsgrad  $\lambda_s =$ 

 $\pi * V(E/f_y) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ [1]

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 1.60$  $\Phi_{bk} =$ [1]  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') =$

0,39 [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -80,18$  kN Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,84 < 1 84% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  [1] K<sub>bdk</sub> =

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93 kN$ Knickbeanspruchbarkeit BDK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegedrillknicken: 0,42 < 1 42% Auslastung:

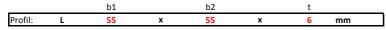


- 318 -

## Ausfachung des Mastschaftes - Wand Y Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 2 - Wand Y Feld 8 Position: 286, 287, 329, 330 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S<sub>v</sub> Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 18 mm Streckgrenze f<sub>v</sub> = N/mm<sup>2</sup> 355 Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) nicht maßgebend Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> maßgebend (Schraubenanzahl n > 1) Anschluss an beiden Schenkeln: 0.9 \* (A - 2 \* d0 \* t) =3,73 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,31 / 3,87 = 1,63 >1,14 => bei \$335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 110,59 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ 0,58 < 1 Zugbeanpruchungsnachweis: Auslastung: 58% 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 2.01 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 96,48 maßgebende Normalkraft maxN: 67.51 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ 0,70 < 1 Auslastung: 70% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,64 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : mm 2,04 $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = P1 = 52 2.29 (nach EN 50 341-1) maßgebend min $\alpha_b$ = 1,64 Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = min $\alpha_b$ \* d \* t \* $f_u$ / $\gamma_{M2}$ \* 0.8 = 49,51 kN $\rightarrow$ \* n Schrauben = 99,01 maßgebende Normalkraft maxN: 67,51 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,68 < 1 Auslastung:



- 319 -


## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 2 - Wand Y Feld 9 Position: Mast 13 288, 289, 331, 332 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$ | = | -64,36 | kN | Lastfall: Ha-4 (VertLast *1,00) |
|-----------------|-----------|---|--------|----|---------------------------------|
| max. Zugkraft   | $N_{z,d}$ | = | 64,07  | kN | Lastfall: Ha-4 (VertLast *1,00) |
| Stützkraft      | $S_d$     | = | 64,07  | kN |                                 |

Knicklänge: β Eulerfall 2 1 Sk  $S_{k,X} = L_2 =$ 0,9 2383 2145  $S_{k,\zeta} = L_1 =$ 0,9 1222 1100 mm

(um yy-Achse) (um vv-Achse)



Querschnittswerte: 6,31 cm<sup>2</sup> Herstellungsart = warm gewalzt 1.58 Stabstahlgüte = \$355  $i_{zz} = i_{yy} =$ cm  $i_{\zeta} = i_{vv} =$ 1,07

cm

Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.605=> ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

λ'<sub>p,2</sub> = 0.0537 \* b1 / v (t \*235 / fy) =ρ2 = bezogene Plattenschlankheit: 0.605 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 6,31 cm<sup>2</sup>

Druckspannungsnachweis:  $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -64,36 kN zulässig! (EN 50341-1:2001 J.4.3)

## 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1) Sd / Nd = 1.00

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49 >= 2/3 Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 < 200 103,07

= 103,07 Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1 / i_{vv}$ < 200 max λ = 103,07  $\pi * V(E/f_v) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_{n} =$ 

bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ [1]

 $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] = 1.69$  $\Phi_{bk} =$ [1]  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.37$  $K_{bk} =$ [1]

Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -75,09$ Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d / N_{R,d} =$ 0,86 < 1 86% Auslastung:

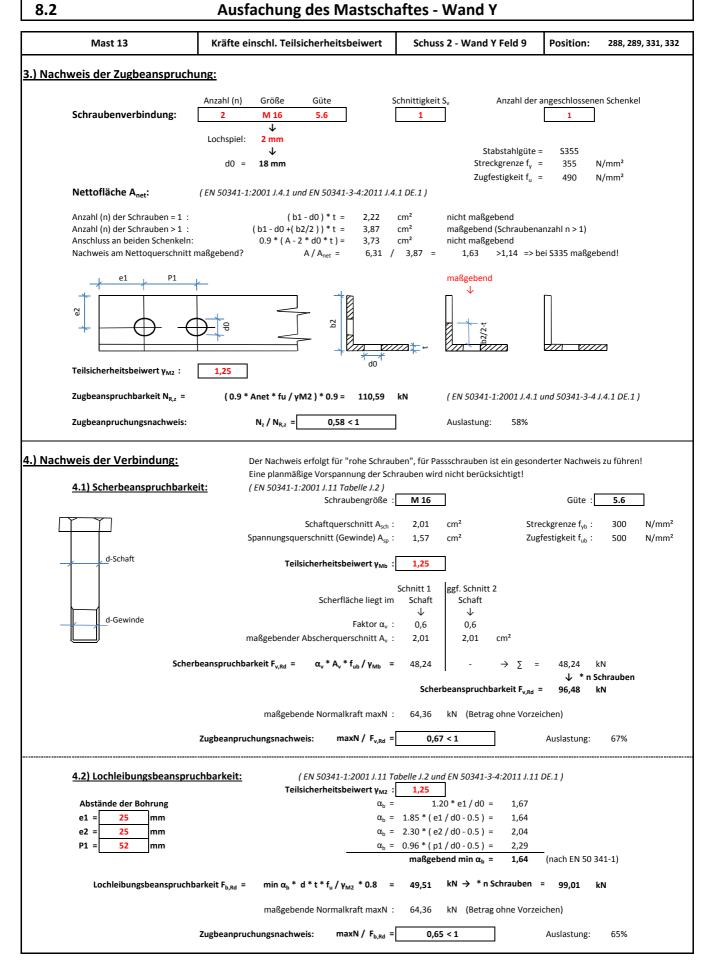
# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

 $\lambda_{BDK} = 5 * b / t = 45,83$ Biegedrillknicken:

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  $K_{bdk} =$ [1]


Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -159,93$  kN Knickbeanspruchbarkeit BDK:

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0.40 < 1Auslastung: 40%



- 320 -





- 321 -

## 8.2 Ausfachung des Mastschaftes - Wand Y

| Mast :                    | Mast 13                                                                                               |                                 |                                                                                             | Kräfte einschl. Teilsicherheitsbeiwert |                 |                                   | Schuss 2 - Wand Y Feld 10 |                                                                                                                                                                                                                      | Position: 290, 291, 333, 334         |  |
|---------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-----------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| 1.) Maßgebende C          | uersch                                                                                                | nittswer                        | te, Kräfte                                                                                  | und Kni                                | cklänger        | <u>ı:</u>                         |                           |                                                                                                                                                                                                                      |                                      |  |
| max. Zugkra               | $\begin{array}{ll} \text{max. Druckkraft} & N_{D,d} \\ \\ \text{max. Zugkraft} & N_{Z,d} \end{array}$ |                                 | = =                                                                                         | -61,14<br>60,69                        | kN<br>kN        | N Lastfall: Ha-4 (VertLast *1,00) |                           |                                                                                                                                                                                                                      | Ausfachungsart: gekreuzte Diagonalen |  |
| Stützkraft<br>Knicklänge: |                                                                                                       | S <sub>d</sub><br>3 Eulerfall 2 | *                                                                                           | 60,65                                  | kN<br>=         | $S_k$                             |                           |                                                                                                                                                                                                                      |                                      |  |
| ,                         | = L <sub>2</sub> =<br>= L <sub>1</sub> =                                                              | 0,9                             | *                                                                                           | 2492<br>1277                           | =               | 2243<br>1149                      | mm<br>mm                  | (um yy-Achse)<br>(um vv-Achse)                                                                                                                                                                                       |                                      |  |
| Profil:                   | L                                                                                                     | b1<br><b>55</b>                 | х                                                                                           | b2<br><b>55</b>                        | х               | 6                                 | mm                        |                                                                                                                                                                                                                      |                                      |  |
| Querschnitt               | swerte:                                                                                               |                                 | $\begin{array}{ccc} A & = \\ i_{zz} & = & i_{yy} = \\ i_{\zeta} & = & i_{vv} = \end{array}$ | 6,31<br>1,58<br>1,07                   | cm²<br>cm<br>cm |                                   |                           | $ \begin{array}{lll} \mbox{Herstellungsart} & = \mbox{warm ge} \\ \mbox{Stabstahlgüte} & = & \mbox{S355} \\ \mbox{Streckgrenze } f_y & = & \mbox{355} \\ \mbox{Zugfestigkeit } f_u & = & \mbox{490} \\ \end{array} $ | walzt<br>N/mm²<br>N/mm²              |  |

# 2.) Stabilitätsnachweise:

### 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

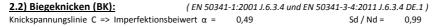
Plattenschlankheit:  $\lambda_{p,1} =$  $b1/t = 55/6 = 9,17 < 13,8 \Rightarrow bei Stahlgüte S355 keine Reduzierung notwendig$ 

E-Modul = 210000 N/mm<sup>2</sup>

>= 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

bezogene Plattenschlankheit:  $\lambda'_{p,1} =$ 0,0537 \* b1 / v (t \*235 / fy) = 0,605 => ρ1 = 1,00


Schenkel 2:

b2/t = 55/6 = 9,17Plattenschlankheit: < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

0.0537 \* b1 / v (t \*235 / fy) =ρ2 = bezogene Plattenschlankheit:  $\lambda'_{p,2} =$ 0.605 1.00

Wirksame Querschnittsfläche: A<sub>eff</sub> = A - t \* [b1 \* (1-ρ1) + b2 \* (1-ρ2) ] = 6,31 cm<sup>2</sup>

Druckspannungsnachweis:  $N_D = A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -61,14 kN zulässig! (EN 50341-1:2001 J.4.3)



Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$ siehe EN 50341-1:2001 J.6.3.3 107,71 < 200 Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1 / i_{vv}$ 107,71 < 200

max λ = 107,71  $\pi * V(E/f_y) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_a$  = bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) v(A_{eff} / A) =$ 1,41 [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] = 1.79$  $\Phi_{bk} =$ [1]

 $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.35$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -70,38$ Knickbeanspruchbarkeit BK:

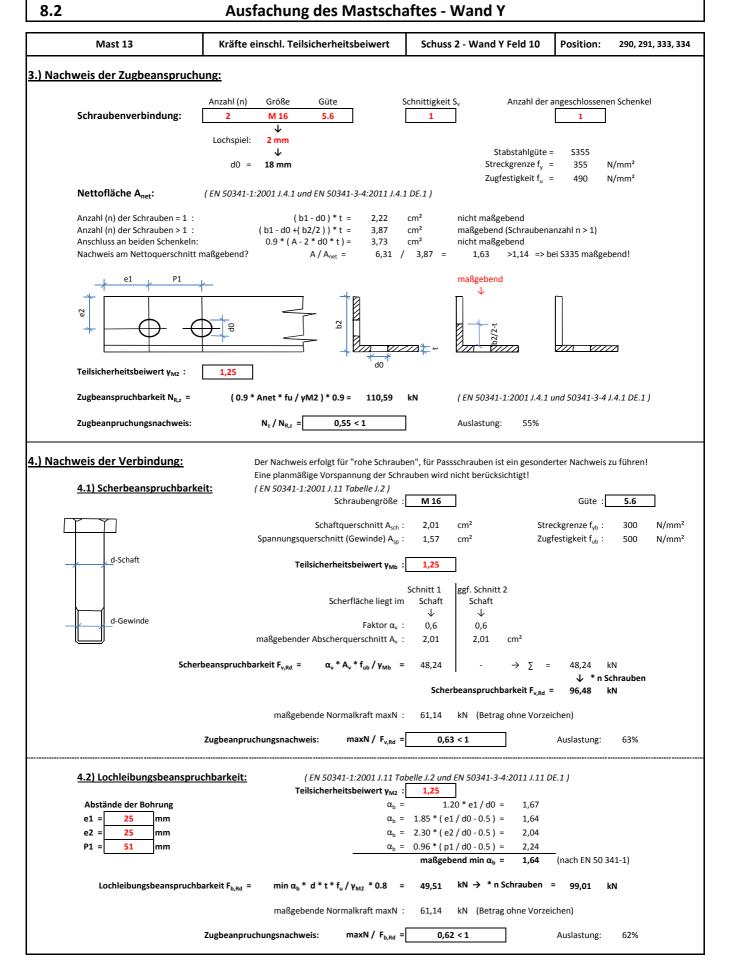
Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,87 < 1 87% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

 $\lambda_{BDK} = 5 * b / t =$ Biegedrillknicken: 45.83

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) V(A_{eff}/A) =$ 0,60 [1]


> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  $K_{bdk}$  = [1]

Knickbeanspruchbarkeit BDK:  $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -159,93$  kN

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0.38 < 138% Auslastung:



- 322 -





- 323 -

## 8.2 Ausfachung des Mastschaftes - Wand Y

Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 11 Position: Mast 13 292, 293, 335, 336 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen: max. Druckkraft Lastfall: Ha-4 (Vert.-Last \*1,35) Ausfachungsart: gekreuzte Diagonalen  $N_{D,d}$ -56,70 max. Zugkraft  $N_{z,d}$ 57.46 kN Lastfall: Ha-4 (Vert.-Last \*1.00) Stützkraft 57.45 kN Sa Knicklänge: β Eulerfall 2 1  $S_k$  $S_{k,X} = L_2 =$ 0,9 2606 2345 (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 0,9 1335 1202 mm (um vv-Achse) b1 Profil: mm Querschnittswerte: 6,31 cm<sup>2</sup> Herstellungsart = warm gewalzt 1.58 Stabstahlgüte = \$355  $i_{zz} = i_{yy} =$ cm = i<sub>vv</sub> = 1,07 Streckgrenze f<sub>v</sub> = N/mm² cm 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 =9,17 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

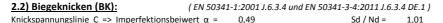
 $E-Modul = 210000 N/mm^2$ 

>= 2/3

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

1,10

bezogene Plattenschlankheit:  $\lambda'_{p,1} =$ 0.0537 \* b1 / v (t \*235 / fy) =0,605 ρ1 = 1,00


Schenkel 2:

Plattenschlankheit: b2/t = 55/6 =9,17 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

0,0537 \* b1 / v (t \*235 / fy) = ρ2 = bezogene Plattenschlankheit:  $\lambda'_{p,2} =$ 0.605 1.00 =>

Wirksame Querschnittsfläche:  $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ cm<sup>2</sup> 6,31

Druckspannungsnachweis:  $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -56,7 kN zulässig! (EN 50341-1:2001 J.4.3)



Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$ siehe EN 50341-1:2001 J.6.3.3 < 200 112,61

Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1/i_{vv}$ 112,61 < 200

max λ = 112,61  $\pi * V(E/f_v) = 76,41$ Bezugsschlankheitsgrad  $\lambda_{2}$  = [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) V(A_{eff} / A) =$ 1,47 [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] =$  $\Phi_{bk} =$ 1,90 [1]

 $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') =$  $K_{bk} =$ 0,32 [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  =  $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -65,81$ 

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,86 < 1 86% Auslastung:

# 2.3) Biegedrillknicken (BDK):

 $K_{bdk}$  =

Knickbeanspruchbarkeit BK:

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  =

 $\lambda_{BDK} \Rightarrow 5 * b / t =$ Biegedrillknicken: 45.83

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60 [1]

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -159,93$  kN Knickbeanspruchbarkeit BDK:

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0.35 < 135% Auslastung:

[1]



- 324 -Ausfachung des Mastschaftes - Wand Y

## Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 11 Position: 292, 293, 335, 336 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Güte Schnittigkeit S. Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm $\downarrow$ Stabstahlgüte = S355 d0 = 18 mm Streckgrenze f<sub>v</sub> = 355 N/mm<sup>2</sup> $Zugfestigkeit f_u =$ N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) ( b1 - d0 ) \* t = nicht maßgebend Anzahl (n) der Schrauben = 1: 2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> maßgebend (Schraubenanzahl n > 1) Anschluss an beiden Schenkeln: 0.9 \* ( A - 2 \* d0 \* t ) =3,73 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,31 / 3,87 = 1,63 >1,14 => bei \$335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 110,59 Zugbeanspruchbarkeit No. = (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z/N_{R,z} =$ Zugbeanpruchungsnachweis: Auslastung: 52% 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt $A_{sch}$ : 2.01 N/mm<sup>2</sup> cm<sup>2</sup> Streckgrenze $f_{yb}$ : 300 Spannungsquerschnitt (Gewinde) A<sub>sp</sub>: cm<sup>2</sup> Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 d-Schaft Teilsicherheitsbeiwert $\gamma_{Mb}$ : Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0.6 0.6 maßgebender Abscherquerschnitt $A_{\nu}\,:$ 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 96,48 kN maßgebende Normalkraft maxN: 57.46 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ Auslastung: 60% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert γ<sub>M2</sub> : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* (e1/d0-0.5) = 1,64 e1 e2 mm $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = 2,04 $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = **P1** 2.24 mm maßgebend min $\alpha_b$ = (nach EN 50 341-1) 1,64 49,51 kN → \* n Schrauben = Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = $\min \alpha_b^* d * t * f_u / \gamma_{M2} * 0.8 =$ 99,01 maßgebende Normalkraft maxN: 57,46 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{b,Rd} =$ 0,58 < 1 Auslastung:

max. Zugkraft



- 325 -

## 8.2 Ausfachung des Mastschaftes - Wand Y

55.06

| Mast 13    |                                                           |           | Kräfte e | einschl. Teilsicherheitsb | Schuss 3 - Wand Y Feld | Position:             | 294, 295, 337, 338 |                |                     |  |
|------------|-----------------------------------------------------------|-----------|----------|---------------------------|------------------------|-----------------------|--------------------|----------------|---------------------|--|
| <u>1.)</u> | 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen: |           |          |                           |                        |                       |                    |                |                     |  |
|            | max. Druckkraft                                           | $N_{D.d}$ | =        | -55,90 kN                 | Lastfall:              | Ha-4 (VertLast *1,00) | Aus                | fachungsart: g | ekreuzte Diagonalen |  |

Stützkraft 55.06 Knicklänge: β Eulerfall 2 -1

 $S_k$  $S_{k,X} = L_2 =$ 0,9 2720 2448 (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 0,9 1393 1254 mm (um vv-Achse)



1,07

Querschnittswerte: 6,31 cm² Herstellungsart = warm gewalzt 1.58 Stabstahlgüte = \$355 cm

> Streckgrenze f<sub>v</sub> = N/mm² cm 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$

Lastfall: Ha-4 (Vert.-Last \*1,00)

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0,0537 \* b1 / v (t \*235 / fy) = 0,605 ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 55/6 =9,17 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

0.0537 \* b1 / v (t \*235 / fy) =ρ2 = bezogene Plattenschlankheit:  $\lambda'_{p,2} =$ 0.605 1.00

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 6,31 cm<sup>2</sup>

 $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -55,9 kN zulässig! (EN 50341-1:2001 J.4.3) Druckspannungsnachweis:

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1) Sd / Nd = 0.98 Knickspannungslinie C => Imperfektionsbeiwert $\alpha$ = 0,49

>= 2/3 Stützkraft ist Zugkraft Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$ siehe EN 50341-1:2001 J.6.3.3 117,50 < 200

= 117,50 Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$  $L_1 / i_{vv}$ < 200 max λ = 117,50

 $\pi * V(E/f_v) =$ Bezugsschlankheitsgrad  $\lambda_n =$ 76,41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \nu (A_{eff} / A) =$ [1]

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$  $\Phi_{bk} =$ 2,01 [1]  $1/(\mathcal{O} + \sqrt{(\mathcal{O}^2 - \lambda' * \lambda')} =$

0,30 [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -61,61 kN$ Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,91 < 1 91% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

 $\lambda_{BDK} = 5 * b / t =$ Biegedrillknicken: 45.83

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5[1 + \alpha(\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  $K_{bdk} =$ [1]

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93$  kN Knickbeanspruchbarkeit BDK:

Stabilitätsnachweis Biegedrillknicken:  $N_d/N_{R,d} =$ 0,35 < 1 35% Auslastung:

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =



- 326 Ausfachung des Mastschaftes - Wand Y

## Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 12 Position: 294, 295, 337, 338 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S. Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 18 mm Streckgrenze f<sub>v</sub> = 355 N/mm<sup>2</sup> Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) nicht maßgebend Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> maßgebend (Schraubenanzahl n > 1) Anschluss an beiden Schenkeln: 0.9 \* (A - 2 \* d0 \* t) =3,73 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,31 / 3,87 = 1,63 >1,14 => bei \$335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 110,59 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ 0,50 < 1 Zugbeanpruchungsnachweis: Auslastung: 50% 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 2.01 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 96,48 maßgebende Normalkraft maxN: 55.9 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ 0,58 < 1 Auslastung: 58% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,64 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : mm 1,66 $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = P1 = 2.19 (nach EN 50 341-1) maßgebend min $\alpha_b$ = 1,64 Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = $\min \alpha_b * d * t * f_u / \gamma_{M2} * 0.8 =$ 49,51 kN → \* n Schrauben = 99,01 maßgebende Normalkraft maxN: 55,9 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,56 < 1 Auslastung: 56%



Ausfachungsart: einfache Diagonalen

yy-Achse

zz-Achse

- 327 -

## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 13 Position: Mast 13 296, 341, 339, 340

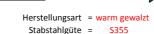
# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

β Eulerfall 2

1,0

1,0

| max. Druckkraft | $N_{D,d}$ | = | - <b>51,24</b> kN | Lastfall: Ha-4 (VertLast *1,35) |
|-----------------|-----------|---|-------------------|---------------------------------|
| max. Zugkraft   | $N_{Z,d}$ | = | <b>52,43</b> kN   | Lastfall: Ha-4 (VertLast *1,00) |
| Stützkraft      | $S_d$     | = | kN                | Achtung keine Stützkraft!       |


1

1396

1396

 $S_k$ 1396 mm (um yy-Achse) 1396 mm (um vv-Achse)





Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

# Querschnittswerte:

Knicklänge:

 $S_{k,X} = L_2 =$ 

 $S_{k,\zeta} = L_1 =$ 

$$A = 6,31 ext{ cm}^2$$
  
 $i_{zz} = i_{yy} = 1,58 ext{ cm}$   
 $i_{\zeta} = i_{yy} = 1,07 ext{ cm}$ 

# 2.) Stabilitätsnachweise:

### 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

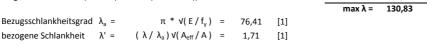
Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.605=> ρ1 =

Schenkel 2:


Plattenschlankheit: b2/t = 55/6 =9,17 < 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 = λ'<sub>p,2</sub> = 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.605 1.00 =>


 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 6,31 cm<sup>2</sup>

 $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -51,24 kN zulässig! Druckspannungsnachweis: (EN 50341-1:2001 J.4.3)

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)



 $L_1 / i_{vv} = 130,83$ Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$ < 200



 $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 2.34$  $\Phi_{bk} =$ [1]  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.25$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

1,10  $K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -51,86$  kN Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d / N_{R,d} =$ 0,99 < 1 Auslastung: 99%

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) =$ 76.41 [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  $K_{bdk} =$ [1]

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93$  kN Knickbeanspruchbarkeit BDK:

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} =$ 0,32 < 1 32% Auslastung:



- 328 -

## Ausfachung des Mastschaftes - Wand Y Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 13 Position: 296, 341, 339, 340 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S<sub>v</sub> Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 18 mm Streckgrenze f<sub>v</sub> = N/mm<sup>2</sup> 355 Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) nicht maßgebend Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> maßgebend (Schraubenanzahl n > 1) Anschluss an beiden Schenkeln: 0.9 \* (A - 2 \* d0 \* t) =3,73 cm² nicht maßgebend Nachweis am Nettoquerschnitt maßgebend? $A/A_{net} =$ 6,31 / 3,87 = 1,63 >1,14 => bei \$335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 110,59 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ 0,47 < 1 Zugbeanpruchungsnachweis: Auslastung: 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 2.01 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 96,48 maßgebende Normalkraft maxN: 52.43 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ Auslastung: 54% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,64 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : mm 2,04 $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = P1 = 47 2.03 (nach EN 50 341-1) maßgebend min $\alpha_b$ = 1,64 Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = min $\alpha_b$ \* d \* t \* $f_u$ / $\gamma_{M2}$ \* 0.8 = 49,51 kN $\rightarrow$ \* n Schrauben = 99,01 maßgebende Normalkraft maxN: 52,43 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,53 < 1 Auslastung:



Ausfachungsart: einfache Diagonalen

yy-Achse

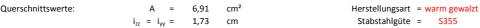
1,10

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =

zz-Achse

- 329 -

# 8.2 Ausfachung des Mastschaftes - Wand Y


Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 4 - Wand Y Feld 13 Position: 297, 298, 342, 343

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

Knicklänge: 1 β Eulerfall 2  $S_k$  $S_{k,X} = L_2 =$ 1,0 1522 1522 mm (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 1,0 1522 1522 mm (um vv-Achse)



1,17



cm

# 2.) Stabilitätsnachweise:

# 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

 $Plattenschlankheit: \hspace{1cm} \lambda_{p,1} = \hspace{1cm} b1/t \hspace{1cm} = \hspace{1cm} 60/6 \hspace{1cm} = \hspace{1cm} 10,00 \hspace{1cm} < \hspace{1cm} 13,8 > \hspace{1cm} be \hspace{1cm} i \hspace{1cm} Stabligüte \hspace{1cm} S355 \hspace{1cm} keine \hspace{1cm} Reduzierung notwendig \hspace{1cm} in \hspace{1cm} i \hspace$ 

bezogene Plattenschlankheit:  $\lambda'_{p,1} = 0.0537 * b1 / v (t *235 / fy) = 0.660 => p1 = 1.000 + p1 = 0.060$ 

Schenkel 2:

Plattenschlankheit:  $\lambda_{p,2}$  = b2/t = 60/6 = 10,00 <13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit:  $\lambda'_{p,2} = 0.0537*b1/v(t*235/fy) = 0.660 => \rho2 = 1.00$ 

Wirksame Querschnittsfläche:  $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] = 6,91$  cm<sup>2</sup>

 $Druckspannungsnachweis: \qquad \qquad N_D <= A_{eff} * f_y / \gamma_{M1}: \quad -222,97 \quad Druckkraft -33,94 \text{ kN zulässig!} \qquad \textit{(EN 50341-1:2001 J.4.3.)}$ 

# **2.2) Biegeknicken (BK):** (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49 Sd / Nd = 0,00 < 2/3 Stützkraft nicht vorhanden

Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2$  => siehe EN 50341-1:2001 J.6.3.3 88,08 < 200

Biegeknicken um die ζ-Achse (yy-Achse):  $λ_{BK,\chi} = λ_2 = >$  siehe EN 50341-1:2001 J.6.3.3 88,08 < 200

Biegeknicken um die ζ-Achse (vv-Achse):  $λ_{BK,\zeta} = λ_1 = >$   $L_1 / i_{vv} = 130,20 < 200$ max λ = 130,20

 $\max \lambda = \quad \textbf{130,}$  Bezugsschlankheitsgrad  $\lambda_a = \quad \pi * \forall (E/f_{\gamma}) = \quad 76,41 \quad [1]$  bezogene Schlankheit  $\lambda' = \quad (\lambda/\lambda_a) \forall (A_{eff}/A) = \quad 1,70 \quad [1]$ 

 $\Phi_{bk} = 0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 2.32 [1]$   $K_{bk} = 1 / (\Phi + V(\Phi^2 - \lambda' * \lambda')) = 0.26 [1]$ 

 $K_{bk} = 1/(\mathcal{O} + V(\mathcal{O}^2 - \lambda' * \lambda')) = 0,26 \quad [1]$  Teilsicherheitsbeiwert:  $\gamma_{M1} = 1$  Knickbeanspruchbarkeit BK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -57,25 \quad kN$ 

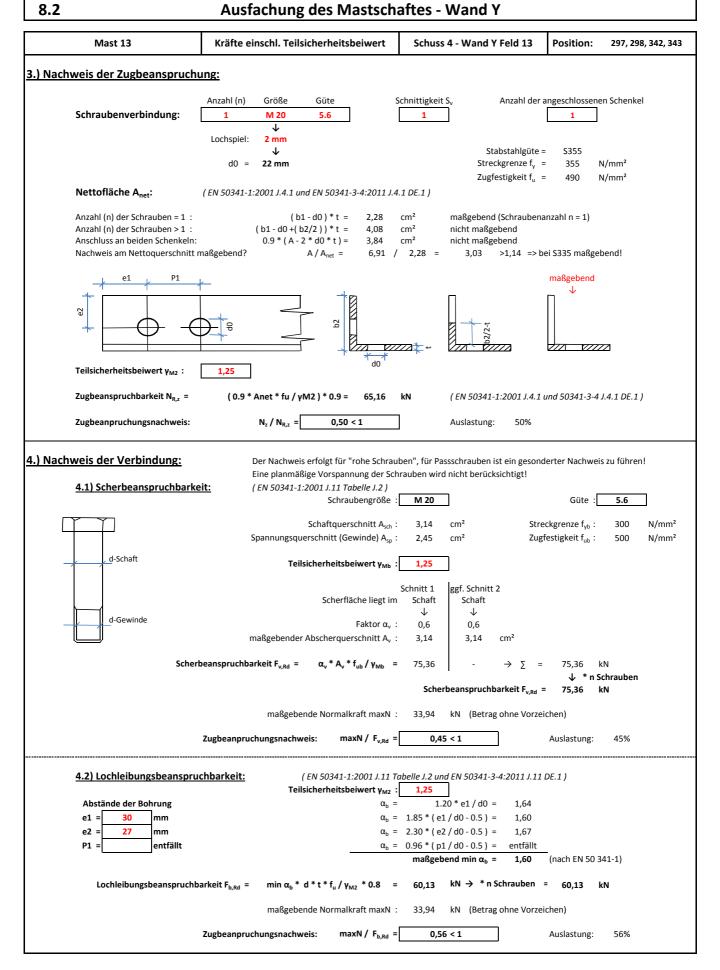
Stabilitätsnachweis Biegeknicken: N<sub>d</sub> / N<sub>R,d</sub> = 0,59 < 1 Auslastung: 59%

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} \Rightarrow 5*b/t = 50,00$ 

Bezugsschlankheitsgrad  $\lambda_a = \pi * v(E/f_y) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) v(A_{eff}/A) = 0,65$  [1]


 $\begin{array}{lll} \varPhi_{bdk} = & & 0.5 \left[ \, 1 + \alpha \left( \, \lambda' - 0.2 \, \right) + \lambda' \, {}^* \, \lambda' \, \right] \, = & 0.83 & [1] \\ K_{bdk} = & & 1 \, / \, \left( \, \varPhi + \sqrt{ \left( \, \varPhi^{\, 2} - \lambda' \, {}^* \, \lambda' \, \right)} \, = & 0.75 & [1] \end{array}$ 

Knickbeanspruchbarkeit BDK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -167,83 \text{ kN}$ 

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} = 0,20 < 1$  Auslastung: 20%



- 330 -





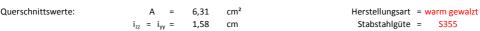
yy-Achse

zz-Achse

- 331 -

# 8.2 Ausfachung des Mastschaftes - Wand Y

Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 14 Position: 299, 300, 344, 345


# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$ | = | -27,37 | kN | Lastfall: J1-Voll         |
|-----------------|-----------|---|--------|----|---------------------------|
| max. Zugkraft   | $N_{Z,d}$ | = | 32,76  | kN | Lastfall: J1-Voll         |
| Stützkraft      | $S_d$     | = |        | kN | Achtung keine Stützkraft! |

Knicklänge:  $\beta$  Eulerfall 2 \* I =  $S_k$   $S_{k,X} = L_2 = 0.9$  \* 3273 = 2946 mm (um yy-Achse)  $S_{k,\zeta} = L_1 = 0.9$  \* 1755 = 1580 mm (um vv-Achse)



1,07



cm

Streckgrenze  $f_y = 355$  N/mm<sup>2</sup>
Zugfestigkeit  $f_u = 490$  N/mm<sup>2</sup>
E-Modul = 210000 N/mm<sup>2</sup>

# 2.) Stabilitätsnachweise:

# 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

 $Plattenschlankheit: \hspace{1cm} \lambda_{p,1} = \hspace{1cm} b1/t \hspace{1cm} = \hspace{1cm} 55/6 \hspace{1cm} = \hspace{1cm} 9,17 \hspace{1cm} < 13,8 > bei Stahlgüte S355 \hspace{1cm} keine Reduzierung notwendig$ 

bezogene Plattenschlankheit:  $\lambda'_{0,1} = 0.0537*b1/v(t*235/fy) = 0.605 => \rho1 = 1.00$ 

Schenkel 2:

Plattenschlankheit:  $\lambda_{p,2}$  = b2/t = 55/6 = 9.17 < 13.8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit:  $\lambda'_{p,2} = 0.0537*b1/v(t*235/fy) = 0.605 => \rho2 = 1.00$ 

Wirksame Querschnittsfläche:  $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] = 6,31$  cm<sup>2</sup>

Druckspannungsnachweis:  $N_D = A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -27,37 kN zulässig! (EN 50341-1:2001 J.4.3)

# **2.2) Biegeknicken (BK):** (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 = >$  siehe EN 50341-1:2001 J.6.3.3 186,97 < 200

Biegeknicken um die X-Achse (γy-Achse):  $λ_{BK,X} = λ_2 = >$  siehe EN 50341-1:2001 J.6.3.3 186,97 < 200

Biegeknicken um die ζ-Achse (νν-Achse):  $λ_{BK,\zeta} = λ_1 = >$   $L_1 / i_{vv} = 148,03 < 200$ max λ = 186,97

Bezugsschlankheitsgrad  $\lambda_a = \pi * V(E/f_y) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) V(A_{eff}/A) = 2,45$  [1]

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

 $\Phi_{bk} = 0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 4.04 [1]$   $K_{bk} = 1 / (\Phi + \nu (\Phi^2 - \lambda' * \lambda')) = 0.14 [1]$ 

,14 [1] Teilsicherheitsbeiwert:  $\gamma_{M1} = \frac{1,10}{}$ 

Sd / Nd = 0.00

< 2/3

Knickbeanspruchbarkeit BK:  $N_{R,d} = K_{bk} * A_{eff} * f_{y} / \gamma_{M1} = -28,03 kN$ 

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} = 0.98 < 1$  Auslastung: 98%

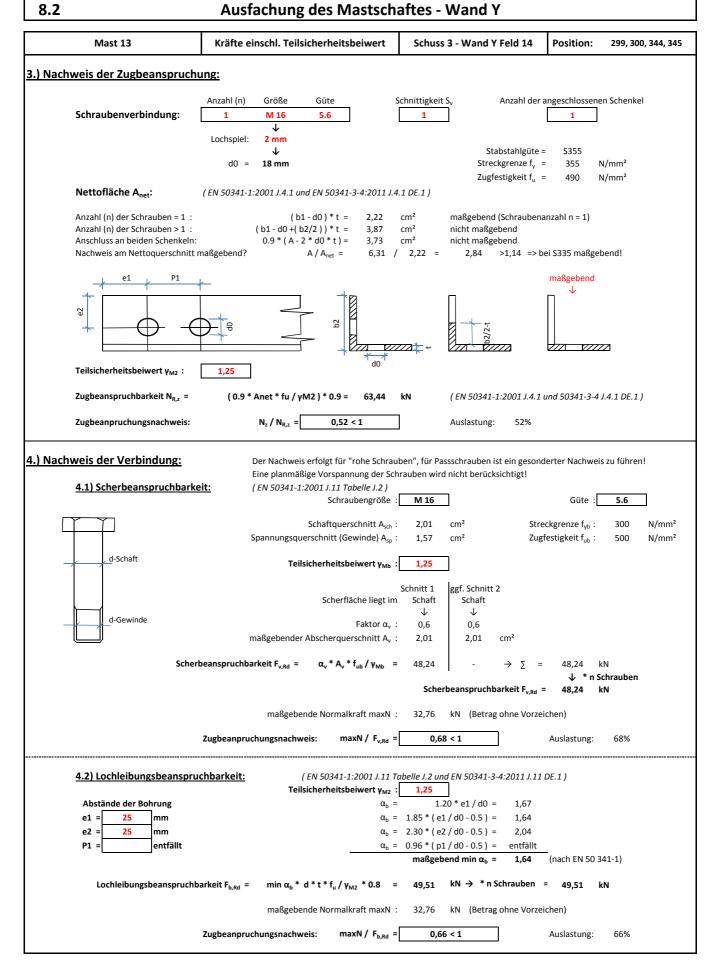
# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} \Rightarrow 5*b/t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a = \pi * v(E/f_v) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda/\lambda_a) v(A_{eff}/A) = 0,60$  [1]

 $\begin{array}{lll} \varPhi_{bdk} = & & 0.5 \left[ \, 1 + \alpha \left( \, \lambda' - 0.2 \, \right) + \lambda' \, {}^* \, \lambda' \, \right] \, = & 0.78 & [1] \\ K_{bdk} = & & 1 \, / \, \left( \, \varPhi + \sqrt{ \left( \, \varPhi^{\, 2} - \lambda' \, {}^* \, \lambda' \, \right)} \, = & 0.79 & [1] \end{array}$ 


 $K_{\rm bdk} = 1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.79$  [1] Teilsicherheitsbeiwert:  $\gamma_{\rm M1} = 0.79$ 

Knickbeanspruchbarkeit BDK:  $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93$  kN

Stabilitätsnachweis Biegedrillknicken:  $N_d / N_{R,d} = 0,17 < 1$  Auslastung: 17%



- 332 -





Ausfachungsart: einfache Diagonalen

- 333 -

## Ausfachung des Mastschaftes - Wand Y 8.2

Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 15 Position: Mast 13 301, 302, 346, 347

# 1.) Maßgebende Querschnittswerte, Kräfte und Knicklängen:

| max. Druckkraft | $N_{D,d}$ | = | -29,59 | kN | Lastfall: J1-Voll         |
|-----------------|-----------|---|--------|----|---------------------------|
| max. Zugkraft   | $N_{Z,d}$ | = | 24,58  | kN | Lastfall: J1-Voll         |
| Stützkraft      | $S_d$     | = |        | kN | Achtung keine Stützkraft! |

Knicklänge: β Eulerfall 2 - 1  $S_k$  $S_{k,X} = L_2 =$ 1,0 1747 1747 (um yy-Achse)  $S_{k,\zeta} = L_1 =$ 1,0 1747 1747 mm (um vv-Achse)

|         |   | b1 |   | b2 |   | t |    |
|---------|---|----|---|----|---|---|----|
| Profil: | L | 55 | х | 55 | х | 6 | mm |

1,07

Querschnittswerte: 6,31 Herstellungsart = warm gewalzt Stabstahlgüte = \$355 1.58 cm

Streckgrenze f<sub>v</sub> = N/mm² 355 Zugfestigkeit f<sub>u</sub> = 490 N/mm²  $E-Modul = 210000 N/mm^2$ 

# 2.) Stabilitätsnachweise:

## 2.1) Ermittlung der wirksamen Querschnittsfläche: (EN 50341-1:2001 J.2.3)

Schenkel 1:

Plattenschlankheit:  $\lambda_{p,1} =$ b1/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

bezogene Plattenschlankheit: 0.0537 \* b1 / v (t \*235 / fy) = 0.605=> ρ1 =

Schenkel 2:

Plattenschlankheit: b2/t = 55/6 = 9,17< 13,8 => bei Stahlgüte S355 keine Reduzierung notwendig

ρ2 =  $\lambda'_{p,2} =$ 0.0537 \* b1 / v (t \*235 / fy) =bezogene Plattenschlankheit: 0.605 1.00 =>

 $A_{eff} = A - t * [b1 * (1-\rho1) + b2 * (1-\rho2)] =$ Wirksame Querschnittsfläche: 6,31 cm<sup>2</sup>

 $N_D \le A_{eff} * f_y / \gamma_{M1}$ : -203,61 Druckkraft -29,59 kN zulässig! (EN 50341-1:2001 J.4.3) Druckspannungsnachweis:

### 2.2) Biegeknicken (BK): (EN 50341-1:2001 J.6.3.4 und EN 50341-3-4:2011 J.6.3.4 DE.1)

Sd / Nd = 0.00Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0.49 < 2/3 Stützkraft nicht vorhanden Biegeknicken um die X-Achse (yy-Achse):  $\lambda_{BK,X} = \lambda_2 =>$  siehe EN 50341-1:2001 J.6.3.3 110,89 < 200

 $L_1/i_w = 163,73$ Biegeknicken um die ζ-Achse (vv-Achse):  $\lambda_{BK,\zeta} = \lambda_1 =>$ < 200 max λ = 163,73

 $\pi * V(E/f_y) = 76,41$  [1] Bezugsschlankheitsgrad  $\lambda_s =$ bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) V(A_{eff} / A) =$ [1]

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] = 3.27$  $\Phi_{bk} =$ [1]

 $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0.17$  [1] Teilsicherheitsbeiwert:  $\gamma_{M1}$  = 1,10

 $N_{R,d} = K_{bk} * A_{eff} * f_y / \gamma_{M1} = -35,45 kN$ Knickbeanspruchbarkeit BK:

Stabilitätsnachweis Biegeknicken:  $N_d/N_{R,d} =$ 0,83 < 1 83% Auslastung:

# 2.3) Biegedrillknicken (BDK):

Knickspannungslinie C => Imperfektionsbeiwert  $\alpha$  = 0,49

Biegedrillknicken:  $\lambda_{BDK} = 5 * b / t = 45,83$ 

Bezugsschlankheitsgrad  $\lambda_a$  =  $\pi * V(E/f_v) = 76,41$  [1] bezogene Schlankheit  $\lambda' = (\lambda / \lambda_a) \vee (A_{eff} / A) =$ 0,60

> $0.5 [1 + \alpha (\lambda' - 0.2) + \lambda' * \lambda'] =$ 0,78  $\Phi_{bdk} =$  $1/(\Phi + V(\Phi^2 - \lambda' * \lambda') = 0,79$  [1] K<sub>bdk</sub> =

 $K_{bk} * A_{eff} * f_y / \gamma_{M1} = -159,93 kN$ Knickbeanspruchbarkeit BDK:

 $N_d / N_{R,d} =$ Stabilitätsnachweis Biegedrillknicken: 0,19 < 119% Auslastung:

Teilsicherheitsbeiwert:  $\gamma_{M1}$  =



- 334 Ausfachung des Mastschaftes - Wand Y

## Mast 13 Kräfte einschl. Teilsicherheitsbeiwert Schuss 3 - Wand Y Feld 15 Position: 301, 302, 346, 347 3.) Nachweis der Zugbeanspruchung: Anzahl (n) Größe Schnittigkeit S<sub>v</sub> Anzahl der angeschlossenen Schenkel Schraubenverbindung: Lochspiel: 2 mm S355 Stabstahlgüte = d0 = 18 mm Streckgrenze f<sub>v</sub> = 355 N/mm<sup>2</sup> Zugfestigkeit f<sub>u</sub> = N/mm<sup>2</sup> Nettofläche Anet: (EN 50341-1:2001 J.4.1 und EN 50341-3-4:2011 J.4.1 DE.1) maßgebend (Schraubenanzahl n = 1) Anzahl (n) der Schrauben = 1: (b1 - d0) \* t =2 22 cm<sup>2</sup> (b1 - d0 + (b2/2))\*t =Anzahl (n) der Schrauben > 1: 3,87 cm<sup>2</sup> nicht maßgebend Anschluss an beiden Schenkeln: 0.9 \* ( A - 2 \* d0 \* t ) =3,73 cm² nicht maßgebend $A/A_{net} =$ Nachweis am Nettoquerschnitt maßgebend? 6,31 / 2,22 = 2,84 >1,14 => bei S335 maßgebend! maßgebend Teilsicherheitsbeiwert $\gamma_{M2}$ : 1.25 Zugbeanspruchbarkeit No. = ( 0.9 \* Anet \* fu / γM2 ) \* 0.9 = 63.44 (EN 50341-1:2001 J.4.1 und 50341-3-4 J.4.1 DE.1) $N_z / N_{R,z} =$ 0,39 < 1 Zugbeanpruchungsnachweis: Auslastung: 39% 4.) Nachweis der Verbindung: Der Nachweis erfolgt für "rohe Schrauben", für Passschrauben ist ein gesonderter Nachweis zu führen! Eine planmäßige Vorspannung der Schrauben wird nicht berücksichtigt! 4.1) Scherbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2) Schraubengröße: M 16 Güte : 5.6 Schaftquerschnitt A<sub>sch</sub>: 2.01 cm<sup>2</sup> Streckgrenze $f_{yb}$ : N/mm<sup>2</sup> 300 Spannungsquerschnitt (Gewinde) A<sub>sn</sub>: Zugfestigkeit f<sub>ub</sub>: N/mm<sup>2</sup> 1.57 cm<sup>2</sup> 500 d-Schaft Teilsicherheitsbeiwert γ<sub>Mb</sub>: Schnitt 1 ggf. Schnitt 2 Scherfläche liegt im Schaft Schaft d-Gewinde Faktor $\alpha_v$ : 0,6 0,6 maßgebender Abscherquerschnitt $A_{\nu}\,$ : 2,01 2,01 Scherbeanspruchbarkeit F<sub>v,Rd</sub> = $\alpha_v * A_v * f_{ub} / \gamma_{Mb} =$ 48,24 ↓ \* n Schrauben Scherbeanspruchbarkeit $F_{v,Rd}$ = 48,24 maßgebende Normalkraft maxN: 29,59 kN (Betrag ohne Vorzeichen) Zugbeanpruchungsnachweis: $maxN / F_{v,Rd} =$ Auslastung: 61% 4.2) Lochleibungsbeanspruchbarkeit: (EN 50341-1:2001 J.11 Tabelle J.2 und EN 50341-3-4:2011 J.11 DE.1) Teilsicherheitsbeiwert $\gamma_{M2}$ : 1,25 Abstände der Bohrung $\alpha_b =$ 1.20 \* e1 / d0 =1,67 $\alpha_b$ = 1.85 \* ( e1 / d0 - 0.5 ) = 1,64 $\alpha_b$ = 2.30 \* ( e2 / d0 - 0.5 ) = e2 : 2,30 entfällt $\alpha_b$ = 0.96 \* ( p1 / d0 - 0.5 ) = entfällt P1 = (nach EN 50 341-1) maßgebend min $\alpha_b$ = 1,64 Lochleibungsbeanspruchbarkeit $F_{b,Rd}$ = min $\alpha_b$ \* d \* t \* $f_u$ / $\gamma_{M2}$ \* 0.8 = 49,51 kN $\rightarrow$ \* n Schrauben = 49,51 maßgebende Normalkraft maxN: 29,59 kN (Betrag ohne Vorzeichen) $maxN / F_{b,Rd} =$ Zugbeanpruchungsnachweis: 0,60 < 1 Auslastung: